\(\left[\left(3^{14}\times69+3^{14}\times12\right):3^{16}-7\right]:2^4\)
\(=\left[3^{14}\left(69+12\right):3^{16}-7\right]:2^4\)
\(=\left[3^{14}.81:3^{16}-7\right]:2^4\)
\(=\left[3^{14}.3^4:3^{16}-7\right]:2^4\)
\(=\left[3^2-7\right]:2^4\)
\(=2:2^4\)
\(=\dfrac{2}{16}=\dfrac{1}{8}\)
\(\left[\left(3^{14}.69+3^{14}.12\right):3^{16}-7\right]:2^4\\ =\left[3^{14}.\left(69+12\right):3^{16}-7\right]:2^4\\ =\left[3^{14}.81:3^{16}-7\right]:2^4\\ =\left[3^{14}.3^4:3^{16}-7\right]:2^4\\ =\left(3^2-7\right):2^4=2:2^4=\dfrac{1}{2^3}=\dfrac{1}{8}\)
\(=\left(\dfrac{3^{14}\cdot\left(69+12\right)}{3^{16}}-7\right):2^4\)
=(3^2-7):2^4
=2:2^4=1/8