\(2x\left(x+3\right)\left(3x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+3=0\\3x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\3x^2=-1\left(\text{loại}\right)\end{matrix}\right.\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{0;-3\right\}\)
`2x(x+3)(3x^2 +1)=0`
\(< =>\left[{}\begin{matrix}2x=0\\x+3=0\\3x^2+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\\3x^2=-1\left(voli\right)\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
\(2x\left(x+3\right)\left(3x^2+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x+3=0\\3x^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\3x^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy \(x\in\left\{0;-3\right\}\)