\(=2\cdot\dfrac{2}{3}\cdot3=4\)
\(\dfrac{2}{1}\times\dfrac{4}{6}\times\dfrac{3}{1}=\dfrac{2\times4\times6}{1\times6\times1}=\dfrac{48}{6}=8\)
\(=2\cdot\dfrac{2}{3}\cdot3=4\)
\(\dfrac{2}{1}\times\dfrac{4}{6}\times\dfrac{3}{1}=\dfrac{2\times4\times6}{1\times6\times1}=\dfrac{48}{6}=8\)
2^6 x3^4=???
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
tính giá trị biểu thức:
H=\(\dfrac{2x-3y}{x-5y}\)với \(\dfrac{x}{y}=\dfrac{3}{2}\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó
a) A={x ∈ R|(2x2 - 5x + 3)(x2 - 4x + 3)= 0}.
b) B={x ∈ R|(x2 - 10x + 21)(x3 - x)= 0}.
c) C={x ∈ N|x + 3 < 4 + 2x; 5x - 3 < 4x - 1}.
d) D={x ∈ Z||x + 2| ≤ 3}.
e)E={x ∈ R|x2 + x + 3 = 0}.
tính hộ chúa con cuối với " ko dùng coccoc math " 100% sai " bạn nào có máy tính casio bấm hộ "
\(x^2+3=x+8+2x-x^2+2x\sqrt{8+2x-x^2}.\)
\(2x^2-3x-5=2x\sqrt{8+2x-x^2}\)
\(4x^4-12x^3-11x^2+30x+25=-4x^4+8x^3+32x^2\)
\(\left(X+1\right)^2\left(2x-5\right)^2+4x^4-8x^3-32x^2=0\)
\(\left(X-1\right)\left(8x^3-12x^2-55x-25\right)=0\)
\(8x^3-12x^2-55x-25=0\)
\(\Delta=144+1320=1464>0\)
\(k=\frac{47520+3456+43200}{2\sqrt{1464^3}}=\frac{94176}{2\sqrt{1464^3}}=\frac{47088}{\sqrt{1464^3}}< 1\)
\(x1=\frac{2\sqrt{1464}cos\left(arccos\left(\frac{47088}{\sqrt{1464^3}}\right)-\frac{2pi}{3}\right)+12}{24}=?\)
x2=...
x3=......
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
a)\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
b)\(|x\left(x-4\right)|=x\)
đúng 100% thì mới được tick nha!
\(\left(1-\dfrac{1}{3}\right)x\left(1-\dfrac{1}{6}\right)x\left(1-\dfrac{1}{15}\right)x.....x\left(1-\dfrac{1}{1225}\right)xa=1\\\)
tìm a ghi chú(\(x\)) = nhân