Ta có: \(2^{x}+2^{x+1}+\cdots+2^{x+2018}=2^{2021}-4\)
=>\(2^{x}\left(1+2+\cdots+2^{2018}\right)=2^2\left(2^{2019}-1\right)\)
Đặt \(A=1+2+\cdots+2^{2018}\)
=>\(2A=2+2^2+2^3+\ldots+2^{2019}\)
=>\(2A-A=2^2+2^3+\cdots+2^{2019}-1-2-\cdots-2^{2018}\)
=>\(A=2^{2019}-1\)
Ta có: \(2^{x}\left(1+2+\cdots+2^{2018}\right)=2^2\left(2^{2019}-1\right)\)
=>\(2^{x}\left(2^{2019}-1\right)=2^2\left(2^{2019}-1\right)\)
=>\(2^{x}=2^2\)
=>x=2