\(2^{3+x}+2^x=576\)
\(\Rightarrow2^x\cdot2^3+2^x=576\)
\(\Rightarrow2^x\cdot\left(2^3+1\right)=576\)
\(\Rightarrow2^x\cdot\left(8+1\right)=576\)
\(\Rightarrow2^x\cdot9=576\)
\(\Rightarrow2^x=576:9\)
\(\Rightarrow2^x=64\)
\(\Rightarrow2^x=2^6\)
\(\Rightarrow x=6\)
Vậy $x=6$.
\(2^{3+x}+2^x=576.\)
\(2^3.2^x+2^x.1=576\)
\(2^x.\left(2^3+1\right)=576\)
\(2^x.9=576\)
\(2^x=576:9\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)