(-2)³ + 2² + (-1)²⁰ + (-2)⁰
= -8 + 4 + 1 +1
= -4 + 1 + 1
= -3 +1
= -2
(-2)³ + 2² + (-1)²⁰ + (-2)⁰
= -8 + 4 + 1 +1
= -4 + 1 + 1
= -3 +1
= -2
Bài 2: CMR: P = 1/1^2 + 1/1^2+2^2 + 1/1^2+2^2+3^2+...+ 1/1^2+2^2+3^2+...+n^2 < 6/2n+1
Cmr (2+1) (2^2+1) (2^4+1)...(2^1024+1)=1+2+2^2+...+2^2047
1. C/m rằng
S = 1/2^2 - 1/2^4 + 1/2^6 - ... + 1/2^4n-2 - 1/2^4n + ... + 1/2^2002 - 1/2^2004 < 0,2
2. C/m rằng
B = 1 - 1/2^2 - 1/3^2 - 1/4^2 - ... - 1/2004^2 > 1/2004
1/2+1/2^2+1/2^5+...+1/2^99
1/2-1/2^4+1/2^7-1/2^10+...-1/2^50
giúp nha
1/2+(1/2)^2+(1/2)^3+(1/2)^4+...+(1/2)^98+(1/2)^99+(1/2)^100
B=20^2 - 19^2 + 18^2 - 17^2 + ......+ 2^2 - 1^2
3 *(2^2 + 1)*(2^4 + 1)*(2^8 + 1)*(2^16 + 1)
gọi a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2; b = 1/2^2 + 1/3^2 + ... + 1/50^2. cmr a < 1/2 < b
gọi a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2; b = 1/2^2 + 1/3^2 + ... + 1/50^2. cmr a < 1/2 < b
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
Tính
1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100