`|x-2|=2x-3(x>=3/2)`
`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\)
`<=>x=5/3(Tm(`
`2)A=-x^2+2x+9`
`=-(x^2-2x)+9`
`=-(x^2-2x+1)+1+9`
`=-(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1.`
1,
* \(|x-2|=x-2< =>x\ge2\)
\(=>x-2=2x-3< =>x=1\left(ktm\right)\)
*\(\left|x-2\right|=2-x< =>x< 2\)
\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)
vậy x=5/3
2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)
\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)
dấu"=" xảy ra<=>x=1
Bài 1:
Ta có: \(\left|x-2\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\left(x\ge2\right)\\2-x=2x-3\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=-3+2\\-x-2x=-3-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=-1\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(lọai\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)
Bài 2:
Ta có: \(A=-x^2+2x+9\)
\(=-\left(x^2-2x-9\right)\)
\(=-\left(x^2-2x+1-10\right)\)
\(=-\left(x-1\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi x=1