Đặt A \(=\) \(\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\)
=> 3A\(=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
=> 3A- A \(=\) 2A \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt B \(=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)=>\(3B=3+1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
=> 2B \(=3-\frac{1}{3^{99}}