Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2021}}\)
=>\(3A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2020}}\)
=>\(3A-A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2020}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{2021}}\)
=>\(2A=1-\dfrac{1}{3^{2021}}\)
=>\(A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{2021}}< \dfrac{1}{2}\)
A=31+321+...+320211
=>\(3 A = 1 + \frac{1}{3} + . . . + \frac{1}{3^{2020}}\)
=>\(3 A - A = 1 + \frac{1}{3} + . . . + \frac{1}{3^{2020}} - \frac{1}{3} - \frac{1}{3^{2}} - . . . - \frac{1}{3^{2021}}\)
=>\(2 A = 1 - \frac{1}{3^{2021}}\)
=>\(A = \frac{1}{2} - \frac{1}{2 \cdot 3^{2021}} < \frac{1}{2}\)