Cho tam giác ABC vuông tại A có đường phân giác AD. Gọi AE là tia phân giác
góc ngoài của tam giác ABC tại đỉnh A, nó cắt BC ở E. Chứng minh: \(\dfrac{1}{AB^2}\) +\(\dfrac{1}{AC^2}\)= \(\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H.
1. Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
2.Giả sử: \(HK=\dfrac{1}{3}AK.\) Chứng minh rằng: tan B . tan C = 3
Cho tam giác ABC nhọn. Các đường cao AK,BD,CE cắt nhau tại H.
1.Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
2. Giả sử: \(HK=\dfrac{1}{3}AK\) . Chứng minh rằng: tanB . tan C =3
3.Giả sử \(S_{ABC}=120cm^2\) và BAC = \(60^o\) . Hãy tính diện tích tam giác ADE?
cho tam giác abc nhọn có đường cao ad,be,cf cắt nhau tại h. chứng minh tg aef~ tg abc và tanB.tanC=AD/HD
Cho tam giác ABC nhọn; các đường cao AK; BD; CE cắt nhau tại H
a, Chứng minh \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
b, Giả sử: HK=\(\dfrac{1}{3}AK\) . Chứng minh rằng tanB.tanC=3
c, Giả sử \(S_{ABC}=120cm^2\) và \(\widehat{BAC}=60^0\) . Hãy tính diện tích của tam giác ADE?
Cho tam giác ABC vuông tại A , có AB=3cm , AC=4cm , đường cao AH (H\(\in\)BC )
1)Tính BC ,AH
b) Kẻ đường phân giác AI của góc BAC (I\(\in\)BC) .Tính BI , CI
c) Chứng minh : \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AI}\)
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH.
a) Cho AB = 6 cm và cosABC = \(\dfrac{3}{5}\). Tính BC, AC, BH.
b) Kẻ HD vuông với AB tại D, AE vuông AC tại E. Chứng minh AD.AB = AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. Chứng minh: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\).
cho tam giác ABC không cân, BD và CE là hai đường phân giác trong của góc B và góc C cắt nhau tại I sao cho: ID=IE
a) Tính góc BAC
b) chứng minh: \(\dfrac{3}{AB+BC+CA}=\dfrac{1}{AB+BC}+\dfrac{1}{BC+AC}\)
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
cho tam giác ABC có 3 góc nhọn (AB>AC)nội tiếp đường tròn (O;R) Hai đường cao AD và BE cắt nhau tại H 1, chúng minh tứ giác CEHD 2,kẻ đường kính AK của (O). chứng minh AC.AB= AK.AD 3, kẻ KI vuông góc với BC (I thuộc BC ) chứng minh : a,AB/BK=IC/IK b,AC/CK+AB/BK = BC /IK