2:
a: ΔBAC cân tại B
mà BD là đường cao
nên D là trungd diểm của AC
b: DA=DC=16/2=8cm
=>BD=6cm
c: Xét ΔBMD vuông tại M và ΔBND vuông tại N có
BD chung
góc MBD=góc NBD
=>ΔBMD=ΔBND
=>BM=BN
=>ΔBMN cân tại B
d: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC
2:
a: ΔBAC cân tại B
mà BD là đường cao
nên D là trungd diểm của AC
b: DA=DC=16/2=8cm
=>BD=6cm
c: Xét ΔBMD vuông tại M và ΔBND vuông tại N có
BD chung
góc MBD=góc NBD
=>ΔBMD=ΔBND
=>BM=BN
=>ΔBMN cân tại B
d: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC
1) Cho △ABC vuông tại A. AB = 3cm, AC = 4cm
a) Tính BC
b) Gọi BD là tia phân giác của góc B, từ D kẻ DE ⊥ BC. Chứng minh AB = BE và AD < DC
c) Gọi F là giao điểm của BA và ED. Chứng minh △BFC cân
2) Cho △ABC có AB = 5cm, AC = 12cm, BC = 13cm
a) △ABC là tam giác gì ? Vì sao ?
b) So sánh các góc trong tam giác ABC
3) Cho △ABC có AB=BC=10cm, AC=16cm. Kẻ BD ⊥ AC tại D
a) Chứng minh DA=DC
b) Tính BD
c) Kẻ DM ⊥ AB tại M, kẻ DM ⊥ BC tại N. Chứng minh MN//AC
Hộ mik với ạ mik cần gấp cảm ơn ạ
Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740
. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300
. Vẽ phân giác AD ( D BC). Vẽ DE
vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều
Bài 2:
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.
a) Chứng minh: ∆ABC cân.
b) Chứng minh ∆AHB = ∆AHC, từ đó chứng minh AH là tia phân giác của góc A.
c) Từ H vẽ HM ⊥ AB (M ∈ AB) và kẻ HN ⊥ AC (N ∈ AC). Chứng minh: ∆BHM = ∆CHN
d) Tính độ dài AH.
e) Từ B kẻ Bx ⊥ AB, từ C kẻ Cy ⊥ AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
f) Chứng minh 3 điểm A, H, O thẳng hàng.
Cho △ABC vuông tại A ( AB < AC). Gọi BD là tia phân giác của góc B trong △ABC với D thuộc AC. Vẽ DM vuông góc với BC tại M.
a) CM: DA = DM và AB = BM.
b) Biết AB = 16cm, DM = 12cm. Tính độ dài đoạn BD.
c)Gọi I là giao điểm của Md và BA. Chứng minh rằng △IBC cân.
Cho tam giác ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H. a) Chứng minh: ABC cân. (1đ) b) Chứng minh = AHB AHC , từ đó chứng minh AH là tia phân giác của góc A. (2đ) c) Từ H vẽ HM ⊥ AB ( ) M AB và kẻ HN ⊥ AC ( ) N AC . Chứng minh : BHM = HCN (1,5đ) d) Tính độ dài AH. (1đ) e) Từ B kẻ Bx ⊥ AB, từ C kẻ Cy ⊥ AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao? (1đ)
Cho tam giác ABC, có AB=AC, D là trung điểm BC a) Chứng minh tam giác AMB= tam giác AMC b) Vẽ DM vuông góc với AB tại M và DN vuông góc với AC tại N. Chứng minh DM=DN c) Chứng minh MN // BC
Cho tam giác ABC vuông tại A có góc AC = 12cm và cạnh AB = 16cm , tia phân giác của góc B cắt AC tại D KẺ DE vuông góc với BC tại R a) tính độ dài cạnh BC b) chứng minh ABD=EBD từ đó suy ra DA=DE c) Gọi K là giao điểm của BA và ED chứng minh tam giác BCK cân
Cho tam giác ABC có AB=AC = 10cm, BC = 12cm. Kẻ A H ⊥ B C tại H.
a) Chứng minh rằng ∆ A B H = ∆ A C H . Từ đó suy ra H là trung điểm của đoạn thẳng BC.
b) Tính độ dài đoạn thẳng AH.
c) Kẻ H I ⊥ A B tại I và H K ⊥ A C tại K. Vẽ các điểm D và E sao cho I, K lần lượt là trung điểm của HD và HE. Chứng minh: AE = AH
d) Tam giác ADE là tam giác gì? Vì sao? Chứng minh DE // BC.
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE.
Cho tam giác ABC vuông tại A.
b1a. Cho biết AB = 9cm; BC =15cm. Tính AC rồi so sánh các góc của tam giác ABC.
b. Trên BC lấy điểm D sao cho BD = BA. Từ D vẽ đường thẳng vuông góc với BC cắt AC tại E. Chứng minh: ΔEBA = ΔEBD.
c. Lấy F sao cho D là trung điểm của EF. Từ D vẽ DM ⊥ CE tại M, DN ⊥ CF tại N. Cho góc ECF = 60º và CD = 10cm . Tính MN.
b2 Cho tam giác ABC cân tại A ( góc A < 90º) . Vẽ AH vuông góc với BC tại H.
a. Chứng minh: ΔAHC = ΔAHB.
b. Kẻ HM vuông góc với AC tại M. Trên tia đối của tia HM lấy điểm N sao cho HN = HM.
c. Chứng minh: BN // AC.
d. Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ