`a) 31^10 < 36^10 = 6^20 = 2^20 . 3^20 = 2^20 . 9^10`
`17^15 > 16^15 = 4^30 = 2^60 = 2^20 . 16^10`
Do `9^10 < 16^10`
`=> 31^10 < 17^15 `
Vậy ....
`b) 625^5 = (5^4)^5 = 5^20`
`125^7 = (5^3)^7 = 5^21`
Do `5^20 < 5^21 ```
`=> 625^5 < 125^7`
Vậy ....
`c) 8^29 = (2^3)^29 = 2^87`
`16^22 = (2^4)^22 = 2^88`
Do `2^87 < 2^88`
`=> 8^29 < 16^22`
Vậy ....
`d) 27^50 = (3^3)^50 = 3^150`
`81^38 = (3^4)^38 = 3^152`
Do `3^150 < 3^152`
`=> 27^50 < 81^38`
Vậy ....``
`e) 625^55 = (5^4)^55 = 5^220`
`125^73 = (5^3)^73 = 5^219`
Do `5^220 > 5^219`
`=> 625^55 > 125^73`
Vậy ...
2.
a, \(\left(x-15\right).15=0\)
\(\Rightarrow x-15=0\)
\(\Rightarrow x=0+15\)
\(\Rightarrow x=15\)
b, \(32.\left(x-10\right)=32\)
\(\Rightarrow x-10=32:32\)
\(\Rightarrow x-10=1\)
\(\Rightarrow x=1+10\)
\(\Rightarrow x=11\)
c, \(12.3+12.x=0\)
\(\Rightarrow12.\left(3+x\right)=0\)
\(\Rightarrow3+x=0\)
\(\Rightarrow x=0-3\)
\(\Rightarrow x=-3\left(l\right)\)
\(\Rightarrow x\) ∈ ∅
d, \(5.4+5.x=0\)
\(\Rightarrow5.\left(4+x\right)=0\)
\(\Rightarrow\text{4+x=0}\)
\(\Rightarrow x=0-4\)
\(\Rightarrow x=-4\left(l\right)\)
\(\Rightarrow x\) ∈ ∅
e, \(11.3+6.x=0\)
\(\Rightarrow11.3+3.2x=0\)
\(\Rightarrow3.\left(11+2x\right)=0\)
\(\Rightarrow11+2x=0\)
\(\Rightarrow2x=-11\)
\(\Rightarrow x=-\dfrac{11}{2}\left(l\right)\)
\(\Rightarrow x\) ϵ ∅
f, \(9.27+x.3=0\)
\(\Rightarrow3^5+x.3=0\)
\(\Rightarrow3.\left(3^4+x\right)=0\)
\(\Rightarrow3^4+x=0\)
\(\Rightarrow x=-3^4\left(l\right)\)
\(\Rightarrow x\) ∈ ∅