cho tam giác ABC có ba góc nhọn, kẻ BD và CE là hai đường vuông góc của tam giác và chúng cắt nhau tại O. Biết góc BOC bằng 119 độ 23 phút 57 dây và diện tích tam giác ADE bằng 6,7. Tính diện tích tứ giác BCED
Trong tam giác vuông có một cạnh góc vuông bằng b, góc nhọn kề với nó bằng α . Hãy biểu thị cạnh góc vuông kia, góc nhọn kề với cạnh này và cạnh huyền qua b và α
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R . Kẻ đường cao AD (D thuộc BC) và đường kính AK . Hạ BE và CF cùng vuông góc với AK ( E thuộc AK , F thuộc AK ).
1) chứng minh tứ giác ABDE nội tiếp.
2) Chứng minh DF song song với BK
3) cho góc ABC = 60 độ , R=4cm. Tính diện tích hình quạt giới hạn bởi OC , OK và cung nhỏ CK .
4) cho BC cố định , A chuyển động trên cung lớn Bc sao cho tam giác ABC có ba góc nhọn . Chứng minh tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
Cho tam giác ABC có ba góc nhọn
nội tiếp (O;R). Tiếp tuyến tại B và C của (O) cắt nhau tại I. Đường thẳng AI cắt (O) tại điểm thứ
hai là D (khác A). Đoạn thẳng OI cắt BC tại H.
a) Chứng minh : OI vuông góc với BC và HB.HC = HOHI
b) Vẽ OK vuông góc với AD. Chứng minh 5 điểm I, B, K, O, C cùng thuộc một đường tròn
c) Từ D kẻ đường thẳng vuông góc với OB, đường thẳng này cắt BC tại M và cắt AB tại N.
Chứng minh : M là trung điểm của DN
a)Một tam giác vuông có tỉ số các cạnh góc vuông bằng k. Tính tỉ số các hình chiếu của hai cạnh góc vuông trên cạnh huyền
b) Tính độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền của một tam giác vuông, biết rằng tỉ số hai cạnh góc vuông bằng 5:4 và cạnh huyền dài 82cm
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của MDC
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh AB2 + AC2 + CD2 + BD2 = 8R2
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BD;
CE và AF của tam giác ABC cắt nhau tại điểm H. Chứng minh rằng:
1) Góc DEC = Góc DBC.
2) CE.HC + BD.HB = BC2
3) Đường thẳng DE vuông góc OA
Cho tam giác MNP có ba góc nhọn và các điểm A,B,C lần lượt là hình chiếu vuông góc của M,N,P trên NP, MP, MN. Trên các đoạn AC, AB lần lượt lấy D, E sao cho DE//NP. Trên AB lấy K sao cho góc DMK=góc NMP. CMR
a/ ME=MD (đã làm)
b/ MDEK nội tiếp