a)\(\left(y+1\right)\left(2-y\right)+\left(y-2\right)^2+y^2-4\)\(=0\)
<=>\(2y-y^2+2-y+y^2-4y+4+y^2-4\)\(=0\)
<=>\(y^2-3y+2=0\)
<=>\(\left(y^2-2y\right)-\left(y-2\right)=0\)
<=>\(\left(y-2\right)\left(y-1\right)=0\)
=>\(\orbr{\begin{cases}y-2=0\\y-1=0\end{cases}}\)=>\(\orbr{\begin{cases}y=2\\y=1\end{cases}}\)
b)\(x^3+x^2-4x=4\)
<=>\(x^3+x^2-4x-4=0\)
<=>\(\left(x^3+x^2\right)-\left(4x+4\right)=0\)
<=>\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
<=>\(\left(x+1\right)\left(x^2-4\right)=0\)
<=>\(\left(x+1\right)\left(x+2\right)\left(x-2\right)=0\)
=> \(x+1=0\)
\(x+2=0\)
\(x-2=0\)
=> \(x=-1;-2;2\)