1. a) Ta có: x4 \(\ge\) 0 và x2 \(\ge\) 0 (với mọi x nên suy ra x4+x2+2\(\ge\)0 (với mọi x \(\in\) R)
Vậy giá trị của biểu thức A luôn có giá trị dương với mọi x \(\in\) R.
b) Ta có: B = (x + 3).(x - 11) + 2018 = x2-11x+3x-33+2018
\(\Leftrightarrow\)
B = x2-8x+1985 = x2-2.4.x+42+1969
\(\Leftrightarrow\) B = (x-4)2+1969
Vì (x-4)2\(\ge\) 0 nên suy ra (x-4)2+1969 \(\ge\) 1969
Vậy giá trị của biểu thức B luôn có giá trị dương với mọi x \(\in\) R.
Bài 2:
a: \(=x^2+3x+\dfrac{9}{4}+\dfrac{19}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=-3/2
b: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu = xảy ra khi x=-5
c: \(=2\left|x-4\right|-\left|x-4\right|^2\)
\(=-\left(\left|x-4\right|^2-2\left|x-4\right|+1\right)+1\)
\(=-\left(\left|x-4\right|-1\right)^2+1< =1\)
Dấu '=' xảy ra khi x-4=1 hoặc x-4=-1
=>x=3 hoặc x=5