Cho tam giác ABC vuông tại A, đường cao AH,AB=3cm, BC=6cm. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC.
a) giải tam giác vuông ABC
b)tính độ dài AH và chứng minh: EF=AH
c) tính: EA.EB + AF.FC
Cho ∆ABC vuông tại A, đường cao AH, AB = 3cm, BC = 6cm 1. Tính AH và chu vi của tam giác ABC 2. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC a) Tính độ dài AH và chứng minh EF = AH b) Chứng minh EA.EB + AF.FC = EF²
Cho tam giác ABC vuông tại A và đường cao AH, AB=3 cm, BC=6cm.
a) Giải tam giác
b) Tính AH? Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. Chứng minh EF= AH
c) Tính EA. EB+ AF.FC
cho tam giác ABC vuông tại A, đường cao AH, có BH=2cm, BC=8cm
A)tính AB, góc C
B)gọi E,F lần lượt là hình chiếu vuông tại H trên AB,AC. chứng minh BE.AB+CF.AC+HB.2HC+BC^2
C) Tìm diện tích tứ giác AEHF
*Cho tam giác ABC vuông tại A, đường cao AH, AB = 3cm, BC= 6cm. Gọi E, F lần lượt là hình chiếu của AH trên cạnh AB, AC.
a. Tính độ dài AC và tìm số đo góc B và C.
b. Tính độ dài AH và chứng minh EF=AH.
c. Tính EA.EB + FA.FC.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tại A , đường cao AH , AB = 3cm , BC = 5cm
a) giải tam giác ABC
b) gọi E , F , lần lượt là hình chiếu H trên cạnh AB và AC
- TÍnh độ dài AH
- Chứng minh EF = AH