Bài 1: q=u2:u1=3:1=3
=> 3 số hạng tiếp theo: 81, 243, 729
Bài 2:
\(S_{11}=\dfrac{u_1.\left(q^{11}-1\right)}{q-1}=\dfrac{5.\left[\left(-2\right)^{11}-1\right]}{-2-1}\\ =\dfrac{5.\left(-2049\right)}{-3}=3415\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: q=u2:u1=3:1=3
=> 3 số hạng tiếp theo: 81, 243, 729
Bài 2:
\(S_{11}=\dfrac{u_1.\left(q^{11}-1\right)}{q-1}=\dfrac{5.\left[\left(-2\right)^{11}-1\right]}{-2-1}\\ =\dfrac{5.\left(-2049\right)}{-3}=3415\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và \(q=\dfrac{1}{2}\) tính \(S_{10}=u_1+u_2+u_3...u_9+u_{10}\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=6\\u_2=18\end{matrix}\right.\) tính tổng của 12 số hạng đầu tiên của cấp số nhân
1) cho dãy số có các số hạng đầu là 8; 15;22; 29; 36;.. số hạng tổng quát của dãy số là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2;d=9\). Khi đó số 2018 là số hạng thứ mấy của dãy
3) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=5;q=2\). Số hạng thứ 6 của cấp số nhân là
4) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2;u_2=6\).Công bội của cấp số nhân bằng
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=-1\\u_2=3\end{matrix}\right.\) tính tổng 10 số hạng đầu tiên của cấp số nhân
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-7\) và q = 2
a) tính \(u_5\)
b) số -3584 là số hạng thứ mấy của cấp số nhân
2)
cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và q = -2
a) tính \(u_{10}\)
b) số -3072 là số hạng thứ mấy của cấp số nhân
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và \(q=\dfrac{1}{2}\) tính \(S_1=u_1+u_2+u_3...+u_9+u_{10}\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_2=2\), \(u_6=32\) công bội của cấp số nhân đó là
2) cho cấp số nhân \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công bội q = 3. Gía trị \(u_{2019}\) bằng
1) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và \(u_7=-10\) công sai của cấp số cộng là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=1\) và d = 2 tổng \(S_{10}=u_1+u_2+u_3...+u_{10}\) bằng
3) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2. Tổng của 2019 số hạng đầu bằng
4) cho cấp số cộng 2;5;8;11;14... công sai của cấp số cộng đã cho bằng
5) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và d = 9 khi đó số 2018 là số hạng thứ mấy trong dãy
6) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2
1) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=6\) và d = -2. Tính \(S_{99}=u_1+u_2+u_3...+u_{99}\)
2) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-2\) và d = 4. Tính \(S_{100}=u_1+u_2+u_3...+u_{99}+u_{100}\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=-1\\u_2=3\end{matrix}\right.\) tính tổng của 10 số hạng đầu tiên của cấp số nhân
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=6\\u_2=18\end{matrix}\right.\) tính tổng của 12 số hạng đầu tiên của cấp số nhân