2: góc ABH+góc HBC=góc ABC
góc ACK+góc KCB=góc ACB
mà góc ABC=góc ACB; góc HBC=góc KCB
nên góc ABH=góc ACK
2: góc ABH+góc HBC=góc ABC
góc ACK+góc KCB=góc ACB
mà góc ABC=góc ACB; góc HBC=góc KCB
nên góc ABH=góc ACK
Cho tam giác ABC cân tại A có AB = 10cm, BH = 6cm. Vẽ AH vuông góc BC tại H.
a, Tính AH =?
b) Chứng minh tam giác ABH= tam giác ACH , từ đó chứng minh AH là tia phân giác của góc A.
c) Từ H vẽ HM vuông góc AB (M ϵ AB) và kẻ HN vuông góc AC (N ϵ AC) .
Chứng minh : tam giác BHM = tam giác HCN
d) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
CÁC BẠN VẼ HÌNH GIÚP MÌNH NHA! MÌNH CẢM ƠN CÁC BẠN!
Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB (H∈AC, K∈AB). Biết AB=10cm; AH=6cm
a,Tính BH,BC
b, Chứng minh 2 tam giác ABH, ACK bằng nhau c, Lấy điểm D bất kì nằm giữa B và C. Gọi E, F theo thứ tự là hình chiếu của điểm D trên AC và AB. Tính DE+FE ( E cần mn giải hộ e câu c)
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng
Bài 5: Cho ∆ABC cân tại A có góc A < 900. Kẻ BH vuông góc với AC tại H, CK vuông góc với AB tại K. Gọi O là giao điểm của BH và CK.
a, Chứng minh: ∆ABH = ∆ACK. b, Chứng minh: ∆OBC cân.
c, Chứng minh: ∆OBK = ∆OCK. d, Chứng minh: HK // BC.
e, AO cắt BC tại I, trên OI lấy M sao cho I là trung điểm của OM.Chứng minh: ∆ACM vuông.
g, Trên nửa mp bờ BC không chứa điểm A lấy N sao cho NB = NC.Chứng minh 3 điểm A, O, N thẳng hàng.
h, Trên tia BH lấy D sao cho H là trung điểm của BD. So sánh góc KCB và góc HDC.
Bài 5: Cho ∆ABC cân tại A có góc A < 900. Kẻ BH vuông góc với AC tại H, CK vuông góc với AB tại K. Gọi O là giao điểm của BH và CK.
a, Chứng minh: ∆ABH = ∆ACK. b, Chứng minh: ∆OBC cân.
c, Chứng minh: ∆OBK = ∆OCK. d, Chứng minh: HK // BC.
e, AO cắt BC tại I, trên OI lấy M sao cho I là trung điểm của OM.Chứng minh: ∆ACM vuông.
g, Trên nửa mp bờ BC không chứa điểm A lấy N sao cho NB = NC.Chứng minh 3 điểm A, O, N thẳng hàng.
h, Trên tia BH lấy D sao cho H là trung điểm của BD. So sánh góc KCB và góc HDC.
Cho tam giác ABC cân tại A ,kẻ BH vuông góc AC,CK vuông góc AB (H thuộc AC ,k thuộc AB). chứng minh tam giác ABH =Tam giác ACK . Gọi I là giao của BH vaf Ck ,AI cắt BC tại M .chứng minh IM là phân giác
Cho ΔABC cân ở A. Trên cạnh BC lấy điểm M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc với AB, NF vuông góc với AC (E ϵ AB, F ϵ AC), EM cắt FN tại H. Chứng minh:
a) ΔABM = ΔACN.
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC.
c) EF // BC.
d) Chứng mình: A, D, H thẳng hàng.
Bài 3 Cho ΔABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB. Gọi M là giao điểm của của BH và CK. a) Chứng minh AH = AK. b) Chứng minh AM là tia phân giác của góc A. c) Chứng minh KH // BC.
cho △ ABC cân tại A có góc A = 80 độ . trên cạnh BC lấy các điểm D và E sao cho BD = CE < 1/2 BC . kẻ DH vuông góc với AB và EK vuông góc với AC ( H ϵ AB , K ϵ AC ) . Gọi M là trung điểm của BC
a) tính số đo các góc B , góc C của △ ABC
b) chứng minh △ADE cân
c) chứng minh AH = AK
d) chứng minh 3 đường thẳng AM , DH và EK cắt nhau tại một điểm