1.
Pt hoành độ giao điểm: \(x^2-2\left(m+1\right)x+3m-4=0\)
\(\Delta'=\left(m+1\right)^2-\left(3m-4\right)=\left(m-\frac{1}{2}\right)^2+\frac{19}{4}>0;\forall m\)
\(\Rightarrow\)d luôn cắt (P) tại 2 điểm phân biệt
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2\left(m+1\right)x_1+3m-4=0\)
\(\Leftrightarrow\left(x_1-1\right)^2=2mx_1-3m+5\)
Thay vào bài toán:
\(3\left(2mx_1-3m+5\right)+2\left(x_2-5\right)\left(3m-4+4\right)=0\)
\(\Leftrightarrow6mx_1-9m+15+6mx_2-30m=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-13m+5=0\)
\(\Leftrightarrow4m\left(m+1\right)-13m+5=0\)
\(\Leftrightarrow4m^2-9m+5=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{5}{4}\end{matrix}\right.\)
Bài 2:
HPT \(\Leftrightarrow \left\{\begin{matrix} 6x-2y=4m-2\\ x+2y=3m+2\end{matrix}\right.\Rightarrow 7x=7m\) (cộng 2 PT theo vế)
$\Rightarrow x=m$
$\Rightarrow y=3x-(2m-1)=3m-(2m-1)=m+1$
Khi đó:
$2x^2+y^2=6$
$\Leftrightarrow 2m^2+(m+1)^2=6$
$\Leftrightarrow 3m^2+2m-5=0$
$(m-1)(3m+5)=0\Rightarrow m=1$ hoặc $m=\frac{-5}{3}$
2.
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(2x^2+y^2=6\)
\(\Leftrightarrow2m^2+\left(m+1\right)^2=6\)
\(\Leftrightarrow3m^2+2m-5=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{5}{3}\end{matrix}\right.\)