Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon
Nguyễn Việt Lâm
9 tháng 10 2024 lúc 17:56

\(f'\left(x\right)=0\) có 3 nghiệm 1/2, 1/3, 1 đều dương

\(u=\left|x\right|\)

\(y'=u'.f'\left(u\right).\left[2021.f^{2020}\left(u\right)-2020.f^{2019}\left(u\right)+2019.f^{2018}\left(u\right)\right]\)

\(=u'.f'\left(u\right).f^{2018}\left(u\right).\left[2021.f^2\left(u\right)-2020.f\left(u\right)+2019\right]\)

Pt \(2021t^2-2020t+2019=0\) vô nghiệm

\(f^{2018}\left(u\right)\) bậc chẵn nên ko ảnh hưởng cực trị

\(u'.f'\left(u\right)\) về bản chất chính là \(\left[f\left(\left|x\right|\right)\right]'\)

Nên số cực trị của \(y\) và \(f\left(\left|x\right|\right)\) là như nhau

\(\Rightarrow3.2+1=7\) cực trị

LNA -  TLT
9 tháng 10 2024 lúc 19:01

Trên lớp cô chỉ dạy cơ bản rồi cho làm đề, rồi cô gọi nên bảng chữa, cô không đi sâu vào hướng làm, mà chỉ gọi học sinh nên chữa rồi giảng bài đã chữa đó, mà mỗi người có 1 tư duy khác nhau không biết sai/ đúng thế nào.  

\(\Rightarrow\) ĐỒNG HƯƠNG - VÀ TUI ĐANG KHÓK THÉT 


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Bin Bin
Nguyễn Thị Thu Hằng Chị...
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết