\(x-y-z=0\Rightarrow\left\{{}\begin{matrix}x-z=y\\y-x=-z\\y+z=x\end{matrix}\right.\)
Do đó:
\(P=\left(\dfrac{x-z}{x}\right).\left(\dfrac{y-x}{y}\right).\left(\dfrac{y+z}{z}\right)=\left(\dfrac{y}{x}\right).\left(\dfrac{-z}{y}\right).\left(\dfrac{x}{z}\right)=\dfrac{-xyz}{xyz}=-1\)