a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(180^0-3\cdot\widehat{C}+\widehat{C}+70^0=180^0\)
=>\(70^0-2\cdot\widehat{C}=0\)
=>\(2\cdot\widehat{C}=70^0\)
=>\(\widehat{C}=\dfrac{70^0}{2}=35^0\)
\(\widehat{A}=180^0-3\cdot35^0=75^0\)
b: ED//BC
=>\(\widehat{AED}=\widehat{ACB}\)(hai góc đồng vị); \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong)
mà \(\widehat{ACB}=\widehat{EBC}\left(=\dfrac{\widehat{ABC}}{2}\right)\)
nên \(\widehat{AED}=\widehat{DEB}\)
=>ED là phân giác của góc AEB