\(\dfrac{8}{2^{n+1}}=\dfrac{32}{4^n}\)
\(\Rightarrow\dfrac{2^3}{2^{n+1}}=\dfrac{2^5}{2^{2n}}\)
\(\Rightarrow\dfrac{2^3.2^2}{2^{n+1}.2^2}=\dfrac{2^5}{2^{2n}}\)
\(\Rightarrow\dfrac{2^5}{2^{n+3}}=\dfrac{2^5}{2^{2n}}\)
\(\Rightarrow n+3=2n\)
\(\Rightarrow n=3\)