Bài 4:
a: \(\overrightarrow{a}=\left(2;-3\right)\)
=>\(\overrightarrow{a}=2\cdot\overrightarrow{i}-3\overrightarrow{j}\)
b: \(\overrightarrow{b}=\left(-1;4\right)\)
=>\(\overrightarrow{b}=-\overrightarrow{i}+4\overrightarrow{j}\)
c: \(\overrightarrow{c}=\left(2;0\right)\)
=>\(\overrightarrow{c}=2\overrightarrow{i}\)
d: \(\overrightarrow{d}=\left(0;-1\right)\)
=>\(\overrightarrow{d}=-\overrightarrow{j}\)
f: \(\overrightarrow{f}=\left(0;-1\right)\)
=>\(\overrightarrow{f}=0\overrightarrow{i}-\overrightarrow{j}\)
g: \(\overrightarrow{g}=\left(-1;8\right)\)
=>\(\overrightarrow{g}=-\overrightarrow{i}+8\overrightarrow{j}\)
h: \(\overrightarrow{h}=\left(0;0\right)\)
=>\(\overrightarrow{h}=0\cdot\overrightarrow{i}+0\cdot\overrightarrow{j}\)
k: \(\overrightarrow{k}=\left(\Omega;-sin10^0\right)\)
=>\(\overrightarrow{k}=\Omega\cdot\overrightarrow{i}-sin10^0\cdot\overrightarrow{j}\)
Bài 1:
a: Các cặp vecto bằng nhau là: \(\overrightarrow{AB};\overrightarrow{DC}\); \(\overrightarrow{BA};\overrightarrow{CD}\); \(\overrightarrow{AD};\overrightarrow{BC}\); \(\overrightarrow{DA};\overrightarrow{CB}\); \(\overrightarrow{AO};\overrightarrow{OC}\); \(\overrightarrow{CO};\overrightarrow{OA}\); \(\overrightarrow{BO};\overrightarrow{OD}\); \(\overrightarrow{DO};\overrightarrow{OB}\)
Các cặp vecto đối nhau là \(\overrightarrow{AB};\overrightarrow{CD}\); \(\overrightarrow{BA};\overrightarrow{DC}\); \(\overrightarrow{AD};\overrightarrow{CB}\); \(\overrightarrow{DA};\overrightarrow{BC}\); \(\overrightarrow{OA};\overrightarrow{OC}\); \(\overrightarrow{OD};\overrightarrow{OB}\); \(\overrightarrow{AB};\overrightarrow{BA}\); \(\overrightarrow{CD};\overrightarrow{DC}\); \(\overrightarrow{AD};\overrightarrow{DA}\); \(\overrightarrow{BC};\overrightarrow{CB}\)
b: Các cặp vecto bằng nhau là: \(\overrightarrow{AB};\overrightarrow{DM}\); \(\overrightarrow{AB};\overrightarrow{MC}\); \(\overrightarrow{BA}=\overrightarrow{CM}\); \(\overrightarrow{BA}=\overrightarrow{MD}\)
Các cặp vecto đối nhau là \(\overrightarrow{AB};\overrightarrow{MD}\); \(\overrightarrow{AB};\overrightarrow{CM}\); \(\overrightarrow{BA};\overrightarrow{MC}\); \(\overrightarrow{BA};\overrightarrow{DM}\); \(\overrightarrow{MD};\overrightarrow{MC}\);\(\overrightarrow{AB};\overrightarrow{BA}\)