a: P(x)=A(x)+B(x)
\(=2x^2-x^3+3x+3+x^3-x^2-4-3x\)
\(=x^2-1\)
b: Đặt P(x)=0
=>\(x^2-1=0\)
=>\(x^2=1\)
=>\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a, \(P\left(x\right)=A\left(x\right)+B\left(x\right)=-x^3+2x^2+3x+3+x^3-x^2-3x-4=x^2-1\)
b, Ta có \(P\left(x\right)=x^2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)