a: Xét ΔAMD và ΔCMB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB
Do đó: ΔMAD=ΔMCB
b: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>AB=CD
Ta có: ΔMAB=ΔMCD
=>\(\widehat{MAB}=\widehat{MCD}\)
=>AB//CD
c: Ta có: \(AN=\dfrac{AB}{2}\)
\(CE=\dfrac{CD}{2}\)
mà AB=CD
nên AN=CE
Xét ΔMAN và ΔMCE có
MA=MC
\(\widehat{MAN}=\widehat{MCE}\)
AN=CE
DO đó: ΔMAN=ΔMCE
=>\(\widehat{AMN}=\widehat{CME}\)
=>\(\widehat{AMN}+\widehat{AME}=180^0\)
=>N,M,E thẳng hàng
mà MN=ME(ΔMAN=ΔMCE)
nên M là trung điểm của NE