Bài 12:
\(\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+...+\dfrac{2}{97\cdot100}\)
\(=\dfrac{2}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\)
\(=\dfrac{2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\cdot\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{99}{100}\)
\(=\dfrac{33}{50}\)
Bài 13:
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{100}< 1\)
Bài 15:
\(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{32}{99}\)
=>\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
=>\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
=>\(\dfrac{1}{x+2}=\dfrac{1}{99}\)
=>x+2=99
=>x=97