Ta có:
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Rightarrow a=\dfrac{a^2+b^2-c^2}{a}\)
\(\Leftrightarrow b^2=c^2\)
\(\Leftrightarrow b=c\) (vì b,c >0)
Thay vào pt(2)
=> \(a^2=\dfrac{a^3-2b^3}{a-2b}\)(b=c)
\(\Leftrightarrow a^3-2a^2b=a^3-2b^3\)
\(\Leftrightarrow2b\left(a^2-b^2\right)=0\)
\(\Leftrightarrow2b\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow a=b\left(vì\left\{{}\begin{matrix}b>0\\a+b>0\end{matrix}\right.\right)\)
\(\Rightarrow a=b=c\)
=> Tam giác ABC đều