3:
\(A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{100}}\)
=>\(7A=1+\dfrac{1}{7}+...+\dfrac{1}{7^{99}}\)
=>\(7A-A=1+\dfrac{1}{7}+...+\dfrac{1}{7^{99}}-\dfrac{1}{7}-\dfrac{1}{7^2}-...-\dfrac{1}{7^{100}}\)
=>\(6A=1-\dfrac{1}{7^{100}}=\dfrac{7^{100}-1}{7^{100}}\)
=>\(A=\dfrac{7^{100}-1}{7^{100}\cdot6}\)
2:
\(19M=\dfrac{19^{31}+95}{19^{31}+5}=1+\dfrac{90}{19^{31}+5}\)
\(19N=\dfrac{19^{32}+95}{19^{32}+5}=\dfrac{19^{32}+5+90}{19^{32}+5}=1+\dfrac{90}{19^{32}+5}\)
\(19^{31}+5< 19^{32}+5\)
=>\(\dfrac{90}{19^{31}+5}>\dfrac{90}{19^{32}+5}\)
=>19M>19N
=>M>N