Đặt \(x=\dfrac{abc}{d}+\dfrac{bcd}{a}=\dfrac{bc\left(a^2+d^2\right)}{ad}\)
\(y=\dfrac{cda}{b}+\dfrac{dab}{c}=\dfrac{ad}{bc}\left(b^2+c^2\right)\)
x+y nguyên
=>(x+y)^2=x^2+y^2+2xy thuộc Z
mà \(x\cdot y=\left(a^2+d^2\right)\left(b^2+c^2\right)\)
xy nguyên
=>x^2+y^2 nguyên
=>x,y nguyen
=>abc/d+bcd/a nguyên
mà abc/d*bcd/a=(bc)^2 nguyên
nên abc/d nguyên
=>abc chia hết cho d