`B = (5n+12)/(n+4) = (5n+20-8)/(n+4) = (5n+20)/(n+4) - 8/(n+4)`
`B=5 -8/(n+4)`
Để `B in ZZ`
`=> n+4 in Ư(8) = {+-1;+-2;+-4;+-8}`
`n+4` | `1` | `-1` | `2` | -2 | 4 | `-4` | 8 | -8 |
`n` | -3 | -5 | -2 | -6 | 0 | -9 | 4 | -12 |
-1)
`C = (4n-17)/(n-1) = (4n-16-1)(n-1) = 4 - 1/(n-1)`
Để `C in ZZ `
`=> n-1 in Ư(1) = +-1`
`<=> {(n-1=1),(n-1=-1):}`
`<=> {(n=1+1=2),(n=-1+1=0):}`