`3^x + 3^(x+1) + 3^(x+2) + 3^(x+3) = 594`
`3^x + 3^x . 3 + 3^x . 9 + 3^x . 27 = 594`
`<=> 3^x . (1+3-9+27) = 594`
`<=> 3^x .22 = 594`
`<=> 3^x = 27`
`<=> 3^x = 3^3`
`=> x = 3`
\(3^x+3^{x+1}-3^{x+2}+3^{x+3}=594\)
\(\Rightarrow3^x+3^x.3-3^x.3^2+3^x.3^3=594\)
\(\Rightarrow3^x\left(1+3-9+27\right)=594\)
\(\Rightarrow3^x.22=594\)
\(\Rightarrow3^x=27\Rightarrow x=3\)