a) A= \(\dfrac{x+5}{x+2}\)
A = \(\dfrac{\left(x+2\right)+3}{x+2}\)
A = \(1+\dfrac{3}{x+2}\)
Để A là số nguyên
=> \(\dfrac{3}{x+2}\) thuộc số nguyên
=>x+2 ∈ Ư(3)={1;-1;3;-3)
x+2 | -1 | 1 | 3 | -3 |
x | -3 | -1 | 1 | -5 |
Vậy x ∈ {-1;-3;1;-5} thì A nguyên
b) A= \(\dfrac{x+5}{x+2}\)
A = \(\dfrac{\left(x+2\right)+3}{x+2}\)
A = \(1+\dfrac{3}{x+2}\)
Để A có GTLN thì \(\dfrac{3}{x+2}\) ∈ Ư(3) = {1,-1,3,-3}
Ta có
\(\dfrac{3}{1+2}\) = \(\dfrac{3}{3}\) = 1
\(\dfrac{3}{-1+2}\) = \(\dfrac{3}{1}\)= 3
\(\dfrac{3}{3+2}\) = \(\dfrac{3}{5}\)
\(\dfrac{3}{-3+2}\) = \(\dfrac{3}{-1}\) = -3
=> A = -1 thì A là GTLN