\(\dfrac{x}{2+3x}-\dfrac{x}{3x-2}=\dfrac{6x^2}{4-9x^2}.\left(x\ne\dfrac{2}{3};\dfrac{-2}{3}\right).\\ \Leftrightarrow\dfrac{3x^2-2x-2x-3x^2+6x^2}{\left(2+3x\right)\left(3x-2\right)}=0.\\ \Rightarrow6x^2-4x=0.\\ \Leftrightarrow2x\left(3x-2\right)=0.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right).\\x=\dfrac{2}{3}\left(koTM\right).\end{matrix}\right.\)