\(S=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(S\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}+\dfrac{9}{ab+bc+ca}=a+b+c+\dfrac{9}{ab+bc+ca}\ge a+b+c+\dfrac{27}{\left(a+b+c\right)^2}=a+b+c+\dfrac{1}{\left(a+b+c\right)^2}+\dfrac{26}{\left(a+b+c\right)^2}\ge\dfrac{2}{a+b+c}+\dfrac{26}{\left(a+b+c\right)^2}\ge2+26=28\)
\(dấu"="\Leftrightarrow a=b=c=1\)