Ta có:\(2022=2021+1=x+1\)
\(f\left(x\right)=x^{15}-2022x^{14}+2022x^{13}+...+2022x-1\\ \Rightarrow f\left(x\right)=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}+...+\left(x+1\right)x-1\\ \Rightarrow f\left(x\right)=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}+...+x^2-x-1\\ \Rightarrow f\left(x\right)=-x-1\\ \Rightarrow f\left(x\right)=-2021-1\\ \Rightarrow f\left(x\right)=-2022\)
Ta có:2022=2021+1=x+12022=2021+1=x+1
f(x)=x15−2022x14+2022x13+...+2022x−1⇒f(x)=x15−(x+1)x14+(x+1)x13+...+(x+1)x−1⇒f(x)=x15−x15−x14+x14−x13+...+x2−x−1⇒f(x)=−x−1⇒f(x)=−2021−1⇒f(x)=−2022