\(R_{23}=R_2+R_3=2+4=6\left(\Omega\right)\)
\(R_{tđ}=\dfrac{R_1.R_{23}}{R_1+R_{23}}=\dfrac{6.6}{6+6}=3\left(\Omega\right)\)
\(U=U_1=U_{23}=I.R_{tđ}=2.3=6\left(V\right)\)
\(\left\{{}\begin{matrix}I_1=\dfrac{U_1}{R_1}=\dfrac{6}{6}=1\left(A\right)\\I_2=I_3=\dfrac{U_{23}}{R_{23}}=\dfrac{6}{6}=1\left(A\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P_1=U_1.I_1=6.1=6\left(W\right)\\P_2=U_2.I_2=2.1=2\left(W\right)\\P_3=U_3.I_3=4.1=4\left(W\right)\end{matrix}\right.\)