\(a,\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)=\left(x^2+4x+4\right)-\left(x^2-2x-3\right)=x^2+4x+4-x^2+2x+3=6x+7\\ b,\left(x^3-2x^2+5x-10\right):\left(x-2\right)=\left[x^2\left(x-2\right)+5\left(x-2\right)\right]:\left(x-2\right)=\left[\left(x^2+5\right)\left(x-2\right)\right]:\left(x-2\right)=x^2+5\)
b: \(=\dfrac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}=x^2+5\)