\(\left|2x-1\right|-\dfrac{1}{2}=\dfrac{1}{3}\)
\(\left|2x-1\right|=\dfrac{5}{6}\)
\(\Rightarrow2x-1=\dfrac{5}{6}\) hoặc \(2x-1=-\dfrac{5}{6}\)
\(2x=\dfrac{11}{6}\) \(2x=\dfrac{1}{6}\)
\(x=\dfrac{11}{12}\) \(x=\dfrac{1}{12}\)
|2x-1| = \(\dfrac{1}{3}+\dfrac{1}{2}\)
|2x-1|= \(\dfrac{5}{6}\)
⇒2x-1= \(\dfrac{5}{6}\) hoặc 2x-1= \(\dfrac{-5}{6}\)
TH1:
2x-1= \(\dfrac{5}{6}\)
2x=\(\dfrac{5}{6}\)+1
2x= \(\dfrac{11}{6}\)
x=\(\dfrac{11}{6}\):2
x= \(\dfrac{11}{12}\)
TH2
2x-1=\(\dfrac{-5}{6}\)
2x= \(\dfrac{-5}{6}\)+1
2x= \(\dfrac{1}{6}\)
x= \(\dfrac{1}{6}\):2
x= \(\dfrac{1}{12}\)
Vậy x∈\(\left\{\dfrac{11}{12};\dfrac{1}{12}\right\}\)