Tam giác đồng dạng

Đức Trịnh Minh

Cho đoạn thẳng AB. O là trung điểm. Trên cùng một nửa mặt phẳng bờ là AB kẻ Ax, By cùng vuông góc với AB. Trên Ac lấy điểm C khác A. Từ O kẻ đường thẳng vuông góc với OC cắt By tại D. Từ O hạ \(OM\perp CD\)

a) Chứng minh \(OA^2=AC.BD\)

b) Chứng minh \(\Delta AMB\) vuông

c) Gọi N là giao điểm của BC và AD. Chứng minh MN//AC

Akai Haruma
Akai Haruma Giáo viên 30 tháng 3 2018 lúc 23:17

Lời giải:

a)

Xét tam giác $COA$ và tam giác $ODB$ có:

\(\left\{\begin{matrix} \widehat{CAO}=\widehat{OBD}=90^0\\ \widehat{COA}=\widehat{ODB}(=90^0-\widehat{DOB})\end{matrix}\right.\)

\(\Rightarrow \triangle COA\sim \triangle ODB(g.g)\)

\(\Rightarrow \frac{CA}{OA}=\frac{OB}{DB}\Rightarrow OA.OB=CA.BD\)

Mà \(OA=OB\Rightarrow CA.BD=OA^2\) (đpcm)

b)

Kẻ $CO$ cắt tia đối của tia $By$ tại $I$

Ta có: \(\left\{\begin{matrix} \widehat{CAO}=\widehat{IBO}=90^0\\ OA=OB\\ \widehat{COA}=\widehat{IOB}(\text{đối đỉnh})\end{matrix}\right.\)

\(\Rightarrow \triangle CAO=\triangle IBO(g.c.g)(*)\Rightarrow CO=IO\)

Tam giác $DCI$ có đường cao $DO$ đồng thời là trung tuyến nên $DCI$ là tam giác cân tại $D$

\(\Rightarrow DO\) đồng thời là đường phân giác của góc D

\(\Rightarrow \widehat{CDO}=\widehat{IDO} \) hay \(\widehat{MDO}=\widehat{BDO}\)

Xét tam giác $MDO$ và $BDO$ có:

\(\left\{\begin{matrix} \widehat{MDO}=\widehat{BDO}\\ \widehat{DMO}=\widehat{DBO}=90^0\end{matrix}\right.\)

\(\Rightarrow \triangle MDO\sim \triangle BDO\Rightarrow \frac{MO}{BO}=\frac{DO}{DO}=1\)

\(\Rightarrow MO=BO=\frac{1}{2}AB\)

Tam giác $MAB$ có đường trung tuyến bằng một nửa cạnh đối diện nên là tam giác vuông.

c) Theo phần b \(\triangle MDO\sim \triangle BDO\Rightarrow \frac{MD}{BD}=\frac{DO}{DO}=1\)

\(\Rightarrow MD=BD\)

Mà \(DC=DI\Rightarrow CM=BI\)

Từ (*) ta cũng có \(CA=BI\) nên suy ra $CA=CM$

Do đó: \(\frac{CA}{BD}=\frac{CM}{MD}\)

Mà theo định lý Talet thì: \(\frac{CN}{NB}=\frac{CA}{BD}\Rightarrow \frac{CM}{MD}=\frac{CN}{NB}\)

Theo định lý Talet đảo suy ra \(MN\parallel BD\parallel AC\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN