Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đỗ Thục Quyên

Giaỉ các phương trình sau 

a) 3/x^2+x-2 - 1/x-1 = -7/x+2

b) 2/-x^2+6x-8 - x-1/x-2 = x+3/x-4

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 15:10

a: Ta có: \(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=\dfrac{-7}{x+2}\)

\(\Leftrightarrow3-\left(x+2\right)=-7\left(x-1\right)\)

\(\Leftrightarrow3-x-2+7x-7=0\)

\(\Leftrightarrow6x-6=0\)

hay x=1(loại

b: Ta có: \(\dfrac{2}{-x^2+6x-8}-\dfrac{x-1}{x-2}=\dfrac{x+3}{x-4}\)

\(\Leftrightarrow\dfrac{-2}{\left(x-2\right)\left(x-4\right)}-\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}\)

Suy ra: \(-2-x^2+5x-4=x^2+x-6\)

\(\Leftrightarrow-x^2+5x-6-x^2-x+6=0\)

\(\Leftrightarrow-2x^2+4x=0\)

\(\Leftrightarrow-2x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)

ILoveMath
12 tháng 8 2021 lúc 15:11

\(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{\left(x^2-x\right)+\left(2x-2\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{x\left(x-1\right)+2\left(x-1\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{1}{x-1}+\dfrac{7}{x+2}=0\)

\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-1\right)}+\dfrac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{3-\left(x+2\right)+7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Rightarrow3-x-2+7x-7=0\)

\(\Rightarrow6x-6=0\)

\(\Rightarrow x=1\)


Các câu hỏi tương tự
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Anonymous
Xem chi tiết
Anonymous
Xem chi tiết
vũ tiền châu
Xem chi tiết
Như Dương
Xem chi tiết