Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, SA=a. Gọi M là điểm nằm trên cạnh CD. Tính thể tích khối chóp S.ABM.
A. a 3 2
B. a 3
C. a 3 6
D. 3 a 3 4
Cho hình chóp tam giác S.ABC có SA vuông góc với mặt đáy, tam giác ABC cân tại A. Trên cạnh AB lấy điểm D sao cho AB = 3AD. Gọi H là hình chiếu của B lên CD, M là trung điểm CH. Tính theo a thể tích khối chóp S.ABM biết SA = AM = a và BM = 2/3 a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, sạnh bên SA vuông góc với mặt đáy. Gọi E là trung điểm của cạnh CD. Biết thể tích khối chóp S.ABCD bằng a 3 3 . Khoảng cách từ điểm A đến mặt phẳng (SBE) bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và S A = a 6 . Tính thể tích V của khối chóp S.ABCD.
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm của AD; M là trung điểm CD; cạnh bên SB hợp với đáy góc 60°. Thể tích của khối chóp S.ABM là:
A. a 3 15 3
B. a 3 15 4
C. a 3 15 6
D. a 3 15 12
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a. Khi đó, thể tích của khối chóp S.ABCD là:
A. a3/4
B. a3/3
C. a3
D. a3/2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, BC = 2a, cạnh bên SA vuông góc với mặt đáy, SA = a. Gọi H là hình chiếu của a trên SB, tính thể tích khối chóp H.ABCD theo a và côsin của góc giữa 2 mặt phẳng (SBC) và (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và S A = a 2 . Thể tích của khối chóp S.ABCD là
A. a 3 2 6
B. a 3 2
C. a 3 2 4
D. a 3 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, S A = a 2 . Gọi B’, D’ là hình chiếu của A lần lượt trên SB, SD. Mặt phẳng (AB’D’) cắt SC tại C’. Thể tích khối chóp S.AB’C’D’ là
A. V = 2 a 3 3 3
B. V = 2 a 3 2 3
C. V = 2 a 3 3 9
D. V = a 3 3 9