Tìm các tiệm cận : \(y=\sqrt{x^2+2x-5}\)
Hỏi đáp
Tìm các tiệm cận : \(y=\sqrt{x^2+2x-5}\)
xét hàm số
f(x)=\(\sqrt[4]{2x}+2\sqrt[4]{6-x}+\sqrt{2x}+2.\sqrt{6-x}\)
D \(\in\left[0;6\right]\)
f'(x)= \(\frac{1}{2.\left(2x\right)^{\frac{3}{4}}}-\frac{1}{2.\left(6-x\right)^{\frac{3}{4}}}+\frac{1}{\sqrt{2x}}-\frac{1}{\sqrt{6-x}}\)
đặt u=\(\left(2x\right)^{\frac{3}{4}}\) \(\left(u\ge0\right)\), v=\(\left(6-x\right)^{\frac{3}{4}}\) \(\left(v\ge0\right)\)
f'(x)= \(\frac{1}{2}.\frac{\left(v^3-u^3\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\frac{\left(v-u\right).\left(v^2+u.v+u^2\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\left(v-u\right).\left(\frac{v^2+u.v+u^2}{\left(u.v\right)^3}+\frac{1}{u.v}\right)\)
\(=\left(v-u\right).g\left(u,v\right)\) ... với g(u,v) > 0
Vậy f'(x) = [(√(2x) - √(6-x)] .G(x), G(x)>0
f'(x)=0 <=> √(2x) - √(6-x) = 0 <=> x=2
lập bảng biến thiên:
tự vẽ
tính f(0), f(2), f(6)
ta được f(x)=m có 2 nghiệm
<=> f(0) \(\le\)m < f(2)
<=> \(2.6^{\frac{1}{4}}+2\sqrt{6}\le m< 3.2^{\frac{1}{4}}+6\)
cho hàm số y=f(x) vs công thức 5 trên x-1
tìm các giá trị của x để vế phải của công thức có nghĩa
công thức có nghĩa \(\Leftrightarrow\frac{5}{x-1}\ne0\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
32, giai
\(4cos^2x+3\sqrt{2}sin2x=8cosx\)
33, giai pt
\(\frac{4sin^22x+6sin^2x-9-3cos2x}{cosx}\)
38, \(2cos^2\frac{6x}{5}+1=3cos\frac{8x}{5}\)
giair pt
41, giai pt:
\(\frac{sin^22x+cos^42x+1}{\sqrt{sinx.cosx}}\)
chứng minh rằng sin A/2 + sin B/2 + sin C/2 >1 với mọi tam giác ABC
Mình học 12, bây giờ mình rất lo lắng về một số kiến thức cơ bản về bất phương trình ( khi nào cần đặt điều kiện, ngoặc nhọn hay vuông,loại hay nhận), hay các phương trình lượng giác cot,tan khi nào có điều kiện. Còn có xác suất và cấp số nhân và cộng nữa. Mình thuộc tuýp khi học toán mình không bao giờ chịu hiểu lý thuyết chỉ cần thầy cô cho bài tập sao khi giải và ví dụ trước cho mình thấy là mình làm luôn. Dạng như là làm riết quen. Nên khi gặp một số bài tập khó cần kĩ năng vận dụng mình rất hoàn mang. Mong các bạn nào đã nắm được các kiến thức đó hoặc nhiều hơn nũa thì hãy chia sẻ và giúp mình với! Cảm ơn rất nhiều!
Don't write in English anymore😂
xét tính chẵn lẻ của hàm số sau :
\(y=\frac{3tan^3x-5sinx}{2+cosx}\)
\(y=\frac{sinx}{x^4-3x^2+2}\)
Tìm GTLN GTNN của hàm số sau
y= sinx + cosx
\(y=\sqrt{2cosx+3}-4\)
\(y=sin^4x+cos^4x\)
Xét tính chẵn lẻ:
a) TXĐ: D = R \ {π/2 + kπ| k nguyên}
Với mọi x thuộc D ta có (-x) thuộc D và
\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)
Vậy hàm đã cho là hàm lẻ
b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)
Với mọi x thuộc D ta có (-x) thuộc D và
\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)
Vậy hàm đã cho là hàm lẻ
Tìm GTLN, GTNN:
TXĐ: D = R
a) Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)
Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)
\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)
Vậy \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)
\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
b) Với mọi x thuộc D ta có:
\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)
\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)
Vậy\(Min_{f\left(x\right)}=5\) khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)
\(Max_{f\left(x\right)}=\sqrt{5}+4\) khi \(\cos x=1\Leftrightarrow x=k2\pi\)
c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)
Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)
Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p