b) (4 trên x^3-4x +1 trên x+2) :(x-2 trên x^2+2x-x trên 2x+4)
c) (x-3 trên x) :(x^2+2x+1 trên x -2x+4 trên x)
giúp vs đc k gấp nắm
b) (4 trên x^3-4x +1 trên x+2) :(x-2 trên x^2+2x-x trên 2x+4)
c) (x-3 trên x) :(x^2+2x+1 trên x -2x+4 trên x)
giúp vs đc k gấp nắm
b:
ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)
\(\left(\dfrac{4}{x^3-4x}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x^2+2x}-\dfrac{x}{2x+4}\right)\)
\(=\left(\dfrac{4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x\left(x+2\right)}-\dfrac{x}{2\left(x+2\right)}\right)\)
\(=\dfrac{4+x\left(x-2\right)}{x\left(x-2\right)\cdot\left(x+2\right)}:\dfrac{2\left(x-2\right)-x^2}{x\left(x+2\right)\cdot2}\)
\(=\dfrac{x^2-2x+4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2x\left(x+2\right)}{-\left(x^2-2x+4\right)}\)
\(=\dfrac{-2}{x-2}\)
c:ĐKXĐ: x<>0
\(\left(x-\dfrac{3}{x}\right):\left(\dfrac{x^2+2x+1}{x}-\dfrac{2x+4}{x}\right)\)
\(=\dfrac{x^2-3}{x}:\dfrac{x^2+2x+1-2x-4}{x}\)
\(=\dfrac{x^2-3}{x}\cdot\dfrac{x}{x^2-3}\)
=1
HuhuaigiúpvớiạToT
B1: P(x) = x5 + 2x4 - 3x3 + 4x2 - 5x + m
a)Tìm dư trong phép chia P(x) cho x - 2,5 với m = 2003
b) Tìm m để P(x) \(⋮\) (x - 2,5)
c) P(x) có nghiệm x = 2, tìm m.
B2: Chia P(x) = x5 - 7,834x3 + 7,581x2 - 4,568x + 3,194 cho x - 2,652. Tìm hệ số của x2 trong đa thức thương.
Cảmơnmngiúpđỡạ =))
Làm tính chia
a)(x^3-1):(x-1)
b)(x^3+x^2-x+1):(x+2)
c)(x^5-4x^3-5x^2+10x):(x^2-2x)
a) \(\left(x^3-1\right):\left(x-1\right)=\left(x-1\right)\left(x^2+x+1\right):\left(x-1\right)=x^2+x+1\)
a: \(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x-1}=x^2+x+1\)
b: \(=\dfrac{x^3+2x^2-x^2-2x+x+2-1}{x+2}=x^2-x+1+\dfrac{-1}{x+2}\)
CMR:3n+3-2.3n+2n+5-7.2n chia hết cho 25
\(3^{n+3}-2.3^n+2^{n+5}-7.2^n=3^n.3^3-2.3^n+2^n.2^5-7.2^n=3^n.\left(27-2\right)+2^n.\left(32-7\right)=3^n.25+2^n.25=\left(3^n+2^n\right).25⋮25\)
Xác định hệ số a,b,c biết:
a) \(x^4-9x^3+ax^2+x+b\) chia hết cho \(x^2-x-2\)
b) \(x^3+ax+b\) chia hết cho x+1 thì dư 7 và khi chia cho x-3 thì dư -5
c) \(ax^3+bx^2+c\) chia hết cho x+2 và chia cho \(x^2-1\) thì dư x+5
CM: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c
\(a^3+b^3+c^3=3abc\)
\(=> (a^3+b^3) + c^3 - 3abc = 0\)
\(=> (a+b)^3 - 3ab(a+b) + c^3 - 3abc=0\)
\(=> [(a+b)^3+c^3] - 3ab(a+b+c) = 0\)
\(=> (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(=> (a+b+c)(a^2+b^2+c^2+2ab-bc-ca)-3ab(a+b+c)=0\)
\(=> (a+b+c)(a^2+b^2+c^2+2ab-bc-ca-3ab)=0\)
\(=> (a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Cho biểu thức A=( x/x+2 + 5x-12/5x2-15x - 8/5x2 +10x ): x2 - 2x + 2/x2 - x - 6
Tìm đkcđ và rút gọn
Tính A khi x = 1 và x = 3
Tìm x để A min
Tìm x thuộc Z để A thuộc Z
a: \(A=\left(\dfrac{x}{x+2}+\dfrac{4x-12}{5x^2-15x}-\dfrac{8}{5x^2+10x}\right):\dfrac{x^2-2x+2}{x^2-x-6}\)
\(=\left(\dfrac{x}{x+2}+\dfrac{4x-12}{5x\left(x-3\right)}-\dfrac{8}{5x\left(x+2\right)}\right)\cdot\dfrac{\left(x-3\right)\left(x+2\right)}{x^2-2x+2}\)
\(=\left(\dfrac{x}{x+2}+\dfrac{4}{5x}-\dfrac{8}{5x\left(x+2\right)}\right)\cdot\dfrac{\left(x-3\right)\left(x+2\right)}{x^2-2x+2}\)
\(=\dfrac{5x^2+4x+8-8}{5x\left(x+2\right)}\cdot\dfrac{\left(x-3\right)\left(x+2\right)}{x^2-2x+2}\)
\(=\dfrac{5x^2+4x}{5x}\cdot\dfrac{x-3}{x^2-2x+2}=\dfrac{\left(5x+4\right)\left(x-3\right)}{5\left(x^2-2x+2\right)}\)
b: Khi x=1 thì \(A=\dfrac{\left(5+4\right)\left(1-3\right)}{5\left(1-2+2\right)}=\dfrac{9\cdot\left(-2\right)}{5}=\dfrac{-18}{5}\)
Khi x=3 thì \(A=\dfrac{\left(5\cdot3+4\right)\left(3-3\right)}{A}=0\)
a)\(\left(\dfrac{20x}{3y^2}\right):\left(\dfrac{4x^3}{5y}\right)\); b)\(\dfrac{4x+12}{\left(x+4\right)^2}:\dfrac{3\left(x+3\right)}{x+4}\).
a ) \(\left(\dfrac{20x}{3y^2}\right):\left(\dfrac{4x^3}{5y}\right)=\dfrac{20x}{3y^2}.\dfrac{5y}{4x^3}=\dfrac{100xy}{12x^3y^2}=\dfrac{25}{3x^2y}\)
b ) Đ/k : \(x\ne-4\)
Ta có : \(\dfrac{4x+12}{\left(x+4\right)^2}:\dfrac{3\left(x+3\right)}{x+4}\)
\(=\dfrac{4\left(x+3\right)}{\left(x+4\right)^2}.\dfrac{x+4}{3\left(x+3\right)}\)
\(=\dfrac{4\left(x+3\right)\left(x+4\right)}{3\left(x+3\right)\left(x+4\right)^2}\)
\(=\dfrac{4}{3\left(x+4\right)}\)
\(=\dfrac{4}{3x+12}\)
\(\left(\dfrac{a^2+b^2}{a}\right)+b:\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right).\dfrac{a^3+b^2}{a^2+b^2}\)
\(=\dfrac{a^2+b^2}{a}+b:\dfrac{a^2+b^2}{a^2b^2}\cdot\dfrac{a^2+b^2}{a^3+b^3}\)
\(=\dfrac{a^2+b^2}{a}+b\cdot\dfrac{a^2b^2}{a^2+b^2}\cdot\dfrac{a^2+b^2}{a^3+b^3}\)
\(=\dfrac{a^2+b^2}{a}+\dfrac{a^2b^3}{a^3+b^3}\)
\(=\dfrac{a^5+a^2b^3+a^3b^2+b^5+a^3b^3}{a\left(a^3+b^3\right)}\)