Bài 6: Ôn tập chương Tổ hợp - Xác suất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Trần
Xem chi tiết
nat lu
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 1 2022 lúc 16:03

a. Gọi chữ số cần lập là \(\overline{abcd}\)

TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)

a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)

\(\Rightarrow4.8.8.7\) số

Tổng cộng: \(A_9^3+4.8.8.7=...\)

b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách

Hoán vị 3 chữ số 0,1,2: có \(3!\) cách

Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách

Ta đi tính số trường hợp 0 đứng đầu:

Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách

Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách

Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số

DUONG VU BAO NgOC
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2022 lúc 16:29

1. Không gian mẫu: \(C_{30}^2\)

Trong 3 số nguyên dương đầu tiên có 15 số chẵn và 15 số lẻ

Hai số có tổng là chẵn khi chúng cùng chẵn hoặc lẻ

\(\Rightarrow C_{15}^2+C_{15}^2\) cách lấy 2 số có tổng chẵn

Xác suất: \(P=\dfrac{C_{15}^2+C_{15}^2}{C_{30}^2}=...\)

2. ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow tan3x=cot\left(\dfrac{\pi}{2}-x\right)\)

\(\Leftrightarrow tan3x=tanx\)

\(\Rightarrow3x=x+k\pi\)

\(\Rightarrow x=\dfrac{k\pi}{2}\)

\(\Rightarrow x=k\pi\)

Có 2 điểm biểu diễn

Sennn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 1 2022 lúc 14:35

Gọi số học sinh nam là a (18<a<36)

Số học sinh nam biết bơi là b, số học sinh nữ biết bơi là c (lẻ)

\(\Rightarrow\dfrac{C_b^1.C_c^1}{C_a^1.C_{36-a}^1}=\dfrac{140}{299}\)

\(\Rightarrow299bc=140a\left(36-a\right)\)

Do \(a+36-a=36\) chẵn \(\Rightarrow\) a và \(36-a\) cùng tính chẵn lẻ

Mặt khác 299 và 140 nguyên tố cùng nhau \(\Rightarrow a\left(36-a\right)⋮299\left(=13.23\right)\)

Do 18<a<36 \(\Rightarrow\) mỗi số a và 36-a không thể đồng thời chia hết 13 và 23

\(\Rightarrow\) a chia hết cho 13 hoặc 23

TH1: \(a⋮13\Rightarrow a=26\Rightarrow36-a=10\) không chia hết 23 (loại)

TH2: \(a⋮23\Rightarrow a=23\Rightarrow36-a=13\) (thỏa mãn)

\(\Rightarrow bc=140\left(=4.5.7\right)\)

Do c lẻ, và \(c< 36-a=13\), đồng thời \(b< a=23\)

TH1: \(c=5\Rightarrow b=28>a\left(ktm\right)\)

TH2: \(c=7\Rightarrow b=20\) (thỏa mãn)

Vậy có 20 học sinh nam biết bơi

Sennn
Xem chi tiết
Sennn
Xem chi tiết
Etermintrude💫
27 tháng 2 2022 lúc 19:36

undefined

CHÚC BẠN HỌC TỐT NHÉ hihi

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 17:04

Ta có:

\(k.C_n^k=k.\dfrac{n!}{\left(n-k\right)!.k!}=n.\dfrac{\left(n-1\right)!}{\left(n-1-\left(k-1\right)\right)!\left(k-1\right)!}=n.C_{n-1}^{k-1}\)

Do đó:

\(1C_n^1+2C_n^2+...+nC_n^n\)

\(=n.C_{n-1}^0+nC_{n-1}^1+...+n\left(C_{n-1}^{n-1}\right)\)

\(=n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)

\(=n.2^{n-1}\)

Mai Anh
Xem chi tiết
Akai Haruma
29 tháng 3 2022 lúc 0:44

Số hạng nào hả bạn? 

Mai Anh
Xem chi tiết
Khôi Bùi
29 tháng 3 2022 lúc 15:02

Với k \(\in\)N* ; ta có : \(kC_n^k=k.\dfrac{n!}{\left(n-k\right)!k!}=\dfrac{n!}{\left(n-k\right)!\left(k-1\right)!}=\dfrac{n\left(n-1\right)!}{\left[n-1-\left(k-1\right)\right]!\left(k-1\right)!}=nC_{n-1}^{k-1}\)

Khi đó : \(C_n^1+2C_n^2+...+nC^n_n\)  = \(\Sigma^n_{k=1}nC^{k-1}_{n-1}\)  

\(n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)  \(=n.\left(1+1\right)^{n-1}=n.2^{n-1}\) ( đpcm )

Mai Anh
Xem chi tiết
Kaito Kid
29 tháng 3 2022 lúc 15:02

undefined

tham khảo