Bài 4: Đường tiệm cận

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 22:55

\(\lim\limits_{x\rightarrow+\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\lim\limits_{x\rightarrow+\infty}\dfrac{2019}{\sqrt{17-\dfrac{1}{x^2}}-m}=\dfrac{2019}{\sqrt{17}-m}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\dfrac{2019}{m-\sqrt{17}}\)

Với \(m\ne\sqrt{17}\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang

Với \(m=\sqrt{17}\) đồ thị hàm số ko có tiệm cận ngang

Xét phương trình: \(\sqrt{17x^2-1}=m\left|x\right|\)

- Với \(m< 0\Rightarrow\) pt vô nghiệm \(\Rightarrow\) ko có tiệm cận đứng \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)

- Với \(m\ge0\)

\(\Leftrightarrow17x^2-1=m^2x^2\Leftrightarrow\left(17-m^2\right)x^2=1\)

+ Nếu \(\left[{}\begin{matrix}m\ge\sqrt{17}\\m\le-\sqrt{17}\end{matrix}\right.\) pt vô nghiệm \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)

+ Nếu \(-\sqrt{17}< m< \sqrt{17}\) pt có 2 nghiệm \(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy \(m=\left\{0;1;2;3;4\right\}\) có 5 phần tử

Bình luận (0)
Muon Lam Quen
Xem chi tiết
Nguyển Thủy Tiên
Xem chi tiết
Akai Haruma
27 tháng 6 2021 lúc 10:39

Bài 5:

\(y=m\sqrt{x^2-4x+7}-(3x-4)=\frac{(m^2-9)x^2+(24-4m^2)x+(7m^2-16)}{m\sqrt{x^2-4x+7}+3x-4}\)

Để đths $y$ có TCN thì:\(\lim\limits_{x\to \pm \infty}y\) hữu hạn

Để điều này xảy ra thì $m^2-9=0\Leftrightarrow m=\pm 3$

Kiểm tra lại thấy cả 2 giá trị này đều thỏa mãn. 

Bình luận (0)
Akai Haruma
27 tháng 6 2021 lúc 10:45

Bài 6: Tiệm cận của ĐTHS chứ làm gì có tiệm cận hàm số hả bạn? 

a. 

\(y=\frac{x^2-3x+2}{2x^2+x-1}=\frac{x^2-3x+2}{(2x-1)(x+1)}\)

$(2x-1)(x+1)=0\Leftrightarrow x=\frac{1}{2}$ hoặc $x=-1$

Do đó TCĐ của ĐTHS là $x=\frac{1}{2}$ và $x=-1$

Mặt khác: \(\lim\limits_{x\to \pm \infty}\frac{x^2-3x+2}{2x^2+x-1}=\frac{1}{2}\) nên $y=\frac{1}{2}$ là TCN của ĐTHS.

b.

$x+1=0\Leftrightarrow x=-1$ nên $x=-1$ là TCĐ của đths

$\lim\limits_{x\to \pm \infty}\frac{1-x}{1+x}=-1$ nên $y=-1$ là TCN của đths

 

Bình luận (0)
Akai Haruma
27 tháng 6 2021 lúc 10:59

6c.

$x+2=0\Leftrightarrow x=-2$ nên $x=-2$ là TCĐ của đths.

\(\lim\limits_{x\to \pm \infty}\frac{2017}{x+2}=0\) nên $y=0$ là TCN của đths.

6d.

\(\lim\limits_{x\to -2+}y=+\infty\) nên $x=-2$ là TCĐ của đths. 

\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}[\frac{1}{x+2}+\frac{4}{x-1-\sqrt{x^2-2x-3}}]=0\) nên $y=0$ là TCN.

 

 

 

 

 

 

Bình luận (0)
Dilly_09
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2021 lúc 20:38

Hàm không có tiệm cận đứng

Hàm không xác định khi \(x\rightarrow-\infty\)

\(\lim\limits_{x\rightarrow+\infty}\sqrt{x+\sqrt{x^2+x-1}}=+\infty\) ko hữu hạn

\(\Rightarrow\)Đồ thị hàm số không có tiệm cận

Bình luận (0)
Dilly_09
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2021 lúc 20:36

\(y=\dfrac{\left(x-1\right)\left(x-2\right)sinx}{x\left(x-2\right)\left(x+2\right)}\)

\(\lim\limits_{x\rightarrow0}\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{sinx}{x}=\dfrac{2}{-4}.1=-\dfrac{1}{2}\) hữu hạn \(\Rightarrow x=0\) ko phải TCĐ

Tương tự: \(\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-1\right)sinx}{\left(x-2\right)\left(x+2\right)x}=\dfrac{1.sin2}{8}\) hữu hạn

\(\lim\limits_{x\rightarrow-2}\dfrac{\left(x-2\right)\left(x-1\right)sinx}{\left(x-2\right)\left(x+2\right)x}=\dfrac{12sin\left(-2\right)}{0}=-\infty\)

\(\Rightarrow x=-2\) là TCĐ duy nhất của ĐTHS

Bình luận (0)
Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 14:49

Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán

Bình luận (0)
Trần T.Anh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 8 2021 lúc 23:22

Căn thức xác định khi \(-\dfrac{1}{3}\le x\le1\)

Do miền xác định này ko chứa vô cực nên hàm không có tiệm cận ngang

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{-3x^2+2x+1}}{x}=\dfrac{1}{0}=\infty\Rightarrow x=0\) là tiệm cận đứng

Bình luận (0)
Trần T.Anh
Xem chi tiết
Long
17 tháng 8 2021 lúc 16:45

TCN hay TCĐ?

Bình luận (1)
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 22:41

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow\pm\infty}\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}=\dfrac{3}{1}=3\) \(\Rightarrow y=3\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}=\dfrac{\sqrt{3}+5}{0}=+\infty\) \(\Rightarrow x=1\) là tiệm cận đứng

\(x=0\) không thuộc miền xác định của căn thức nên ko phải TCĐ

Bình luận (0)
Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 22:20

1.

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN

\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ

Hàm có 4 tiệm cận

Bình luận (0)
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 22:27

2.

Căn thức của hàm luôn xác định

Ta có:

\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn

\(\Rightarrow x=2\) ko phải TCĐ

\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)

\(\Rightarrow x=3\) là tiệm cận đứng duy nhất

Bình luận (0)