Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán
Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán
Gọi S là tập hợp các giá trị nguyên của m sao cho đồ thị hàm số y = \(\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}\) có bốn đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang). Tính số phần tử của tập S
Câu 1: Tìm m để đồ thị hàm số y = \(\sqrt{4x^2+mx+1}-2x+1\)có tiệm cận đứng là đường thẳng y = \(\dfrac{3}{2}\)
Câu 2: Tổng các giá trị m để đồ thị hàm số y =\(\dfrac{x-1}{x^2-3x-m}\) có đúng một tiệm cận đứng
Câu 3: Tìm các giá trị của m để đồ thị hàm số y =\(\dfrac{x+1}{\sqrt{mx^2+1}}\)có 2 tiệm cận ngang
Chân thành cảm ơn đã chú ý!!
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
Tìm m để Đồ thị của hàm số y=\(\dfrac{x^2+m}{x^2+mx}\) có 3 đường tiệm cận
tìm m để đồ thị hàm số \(y=\dfrac{2x^2-3x+m}{x-m}\) không có tiệm cận đứng
26. Tìm số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \(\dfrac{\sqrt{x-1}}{x^2-3x+2}\)
tìm m để đồ thị hàm số \(y=\dfrac{x-m}{x^2+3x+4}\) có đúng 1 đường tiệm cận đứng
Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số :
\(y=\dfrac{2x+3}{2-x}\)
79. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho đồ thị hs f(x) = \(\dfrac{x}{\sqrt{x^3+mx+1}-\sqrt[3]{x^4+x+1}+m^2x}\) nhận trục tung làm tiệm cận đứng . Khi đó tích các phần tử của S bằng ?