rút gọn phân thức
1.\(\dfrac{3\left|x-4\right|}{3x^2-3x-36}\)
2.\(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
3.\(\dfrac{x^2+5x+6}{x^2+4x+4}\)
rút gọn phân thức
1.\(\dfrac{3\left|x-4\right|}{3x^2-3x-36}\)
2.\(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
3.\(\dfrac{x^2+5x+6}{x^2+4x+4}\)
a, \(\dfrac{3\left|x-4\right|}{3x^2-3x-36}=\dfrac{3\left|x-4\right|}{3\left(x^2-x-12\right)}=\dfrac{\left|x-4\right|}{x^2-x-12}\)
b, \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}=\dfrac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}\)
\(=\dfrac{\left(-x-2\right)\left(x+8\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}\)
\(=\dfrac{-\left(x+8\right)}{x+2}=\dfrac{-x-8}{x+2}\)
c, \(\dfrac{x^2+5x+6}{x^2+4x+4}=1+\dfrac{x+2}{x^2+4x+4}=1+\dfrac{x+2}{\left(x+2\right)^2}\)
\(=1+\dfrac{1}{x+2}=\dfrac{x+3}{x+2}\)
a, tiếp:
+) Xét \(x\ge4\) có:
\(\dfrac{x-4}{x^2-x-12}=\dfrac{x-4}{x^2-4x+3x-12}=\dfrac{x-4}{x\left(x-4\right)+3\left(x-4\right)}\)
\(=\dfrac{x-4}{\left(x+3\right)\left(x-4\right)}=\dfrac{1}{x+3}\)
+) Xét x < 4 có:
\(\dfrac{4-x}{x^2-x-12}=\dfrac{4-x}{x^2-4x+3x-12}=\dfrac{4-x}{x\left(x-4\right)+3\left(x-4\right)}\)
\(=\dfrac{4-x}{\left(x+3\right)\left(x-4\right)}=\dfrac{-\left(x-4\right)}{\left(x+3\right)\left(x-4\right)}=\dfrac{-1}{x+3}\)
\(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
\(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
\(=\dfrac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}\)
\(=\dfrac{\left(-2-x\right)\left(8+x\right)}{\left(x+2\right)^2}\)
\(=\dfrac{-\left(x+2\right)\left(8+x\right)}{\left(x+2\right)^2}\)
\(-\dfrac{8+x}{x+2}\)
\(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
\(\Leftrightarrow\dfrac{3^2-\left(x+5\right)^2}{\left(x+2\right)^2}\)
\(\Leftrightarrow\dfrac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}\)
\(\Leftrightarrow\dfrac{\left(-x-2\right)\left(x+8\right)}{\left(x+2\right)^2}\)
\(\Leftrightarrow\dfrac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}\)
\(\Leftrightarrow\dfrac{-\left(x+8\right)}{\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{-x-8}{x+2}.\)
Rút gọn bt :
\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}\)
\(=\dfrac{x^2.\left(x^2-1\right)-4.\left(x^2-1\right)}{x^2.\left(x^2-1\right)-9.\left(x^2-1\right)}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)
\(=\dfrac{x^2-4}{x^2-9}\)
Chúc bạn học tốt!!!
\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
\(=\dfrac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}\)
\(=\dfrac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
Ta có: \(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)\(=\dfrac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\dfrac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}\)\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\).
Tìm giá trị của x để các phân thức sau bằng 0:
a,\(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\) b,\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
a) \(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
= \(\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^3\left(x-1\right)-\left(x-1\right)+2x^2}\)
= \(\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x-1\right)\left(x^3-1\right)+2x^2}\)
= \(\dfrac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)+2x^2}\)
= \(\dfrac{\left(x+1\right)^2.\left(x^2-x+1\right)}{\left(x-1\right)^2\left(x^2+x+1\right)+2x^2}\)
Ta thấy mẫu thức của phân thức vốn đã lớn hơn 0 với mọi x, vậy để p/t trên có giá trị bằng 0 thì tử thức phải bằng 0
\(\Rightarrow\left(x+1\right)^2\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Vậy x = -1
b) \(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
= \(\dfrac{x^4-x^3+x^3-x^2-4x^2+4}{x^4-x^3+x^3-x^2-9x^2+9}\)
= \(\dfrac{x^3\left(x-1\right)+x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)}{x^3\left(x-1\right)+x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{\left(x-1\right)\left(x^3+x^2-4x-4\right)}{\left(x-1\right)\left(x^3+x^2-9x-9\right)}\)
= \(\dfrac{x^3+x^2-4x-4}{x^3+x^2-9x-9}\)
= \(\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)-9\left(x+1\right)}\)
= \(\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\) ( ĐKXĐ : \(x\ne\pm3\) )
Để phân thức trên có giá trị bằng 0 thì tử thức phải bằng 0
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) ( thoả mãn điều kiện xác định )
Vậy x = 2 hoặc x = -2
Rút gọn:
a, \(\dfrac{4x^2-8xy}{10y-5x}\)
b, \(\dfrac{\left(x-2\right)^2-1}{x^2-6x+9}\)
c, \(\dfrac{x^2+8x+16}{x^2-16}\)
a, \(\dfrac{4x^2-8xy}{10y-5x}=\dfrac{4x\left(x-2y\right)}{5\left(2y-x\right)}=\dfrac{-4x}{5}\)
b, \(\dfrac{\left(x-2\right)^2-1}{x^2-6x+9}=\dfrac{\left(x-2-1\right)\left(x-2+1\right)}{\left(x-3\right)^2}\)
\(=\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)^2}=\dfrac{x-1}{x-3}\)
c, \(\dfrac{x^2+8x+16}{x^2-16}=\dfrac{\left(x+4\right)^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\)
rút gọn
a) \(\dfrac{4-4x^2-9y^2-12xy}{2x+2+3y}\)
b) \(\dfrac{\left(2a+3\right)^3-\left(2a-3\right)^3}{\left(3a+4\right)^2+3a^2-24a-7}\)
c) M=\(\dfrac{\left|x-1\right|+\left|x\right|+x}{3x^2-4x-1}\) với x<0
Tìm x để A âm
\(A=\dfrac{x^2+1}{x+2}\)
Vì \(x^2+1>0\) \(\Rightarrow\) Để A < 0 thì \(x+2< 0\)
=> \(x< -2\)
Vì tử là dương nên để A là số âm thì x + 2 phải là số âm.
=> x+2 < 0
=> x < -2
1 rút gọn a )4x2+12x+9 b)7a3x + 7ax3 -------------- --------------- 2x2 -x-6 a4-x4
a ) 4x^2 + 12x + 9
= ( 2x )^2 + 2.2x.3 + 3^2
= ( 2x + 3 ) ^2
1rut gon a 4x2+19x+9: 2x2-x-6 b)7a3x+7ax3:a4-x4
aRút gọn Biểu thức
b, Tìm x c Z để B c Z
B=x+2/x+3 - 5/x^2 +x-6 + 1/2-x
a,Rút gọn P
b Tìm x để P=0,P=1,P>0
P=x+3/x2+5x+6 : (8x2/4x3-8x2 - 3x/3x2-12 - 1/x+2)
help me please
Bài 2:
a: \(P=\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=\dfrac{1}{x+2}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=\dfrac{1}{x+2}:\left(\dfrac{4}{x-2}-\dfrac{1}{x+2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\dfrac{1}{x+2}:\dfrac{4x+6-x+2-x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{1}{x+2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x+8}=\dfrac{x-2}{2x+8}\)
b: Để P=0 thì x-2=0
hay x=2(loại)
Để P=1 thì 2x+8=x-2
hay x=-10(nhận)
Để P>0 thì \(\dfrac{x-2}{2x+8}>0\)
=>x>2 hoặc x<-4