Bài 2:
a: \(P=\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=\dfrac{1}{x+2}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=\dfrac{1}{x+2}:\left(\dfrac{4}{x-2}-\dfrac{1}{x+2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\dfrac{1}{x+2}:\dfrac{4x+6-x+2-x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{1}{x+2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x+8}=\dfrac{x-2}{2x+8}\)
b: Để P=0 thì x-2=0
hay x=2(loại)
Để P=1 thì 2x+8=x-2
hay x=-10(nhận)
Để P>0 thì \(\dfrac{x-2}{2x+8}>0\)
=>x>2 hoặc x<-4