c/C=\(\frac{2x^2+2x}{1-x}-\frac{x}{x-1}=\frac{2x^2+2x+x}{1-x}=\frac{2x^2+3x}{1-x}\)
d/C thuộc Z thì C=\(\frac{\left(2x^2-2x\right)+\left(5x-5\right)+5}{1-x}=\frac{-2x\left(1-x\right)-5\left(1-x\right)+5}{1-x}=-2x-5+\frac{5}{1-x}\Rightarrow1-x\in\left(+-1,+-5\right)\Rightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-4\\x=6\end{matrix}\right.\)
a/A đã rút gọn B=\(\frac{1-2x}{x^2-3x+2}+\frac{x+1}{x-2}=\frac{1-2x}{\left(x-1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}=\frac{1-2x+x^2-1}{\left(x-1\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{x}{x-1}\)b/\(\left|x-2\right|=3\Rightarrow\left\{{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B=\frac{2.5^2+2.5}{1-5}=-15\\B=\frac{2.\left(-1\right)^2+2\left(-1\right)}{1-\left(-1\right)}=0\end{matrix}\right.\)